
Book of abstracts PATAS 2021

3 Abstracts - Posters

P01	Ayouz Mehdi
P02	Barzaga Ransele
P03	Brandão João
P04	Cabrera Adriana
P05	Carlini Laura
P06	Chiarinelli Jacopo
P07	Fonseca Dos Santos Luan Gabriel
P08	González Daniel
P09	Hansen Klavs
P10	Kono Naoko
P11	Lacinbala Ozan
P12	Louis Florent
P13	Lucia Jesus
P14	Mezei Zsolt
P15	Montes de Oca Estévez Judit
P17	Ozer Zehra Nur
P18	Piekarski Dariusz
P19	Poline Mathias
P21	Rio Carolina
P22	Rodríguez-Segundo Raul
P23	Sanz-sanz Cristina
P24	Tikhonov Denis
P25	Velásquez Hernán
P26	Vinklarek Ivo
P27	Wang Wenli
P28	Yanes Rodríguez Raquel
P29	Kristiansson Moa

MASS SPECTROMETRY AND INFRARED STUDIES ON DIPEPTIDES REVEAL AN EFFECTIVE (AND NON-CHEMICALLY ACTIVATED) CYCLISATION MECHANISM IN ABIOTIC CONDITIONS

L. Carlini^(a), J. Chiarinelli^(a), M. C. Castrovilli^(a), P. Bolognesi^(a), L. Avaldi^(a), G. Mattioli^(a)

(a) CNR-Istituto di Struttura Della Materia (CNR-ISM), Area della Ricerca di Roma 1, Monterotondo Scalo, Italy

The linear (ℓ) and cyclic (c-) dipeptides, being the simplest prototype peptides, are the building blocks of proteins and enzymes, and determine their structures and functions. Moreover dipeptides may have played a key role in the origin of life [1,2]. Among the several processes leading to the structural rearrangement of dipeptides from the ℓ- to the c- structure, the role of the temperature is the least investigated and characterized. Nevertheless, it may be crucial in the astrochemical harsh environment as well as in the sublimation used in the laboratory to produce effusive molecular beams for photoemission (PES and XPS) and mass spectrometry (MS) measurements [3,4]. In this work we combine gas-phase studies of ℓ and c-dipeptides by means of Time-Of-Flight Mass Spectrometry (TOF-MS) with Thermogravimetric Analysis (TGA), Infrared and Raman spectroscopies in condensed phase to investigate temperature induced peptide bond formation and disruption. Theoretical calculations have been implemented to simulate the IR spectra of ℓ - and c- dipeptides, which were used to predict and identify the vibrational frequencies that witness changes in the chemical structure of the sample. The experimental results and theoretical predictions provided evidences that, at least in some \ell-dipeptides, an irreversible cyclisation mechanism driven by temperature does happen in the condensed phase under UHV conditions. This mechanism does not require the presence of activating agents, chemical precursor or liquid water. Thus, it may occur spontaneously over the different periods of time and physicochemical conditions experienced by comets and carbonaceous chondrites [5,6]. The process proves to be a "clever" reaction cycle from ℓ- to c-structure that preserves the aminoacid sequence for further peptide evolution.

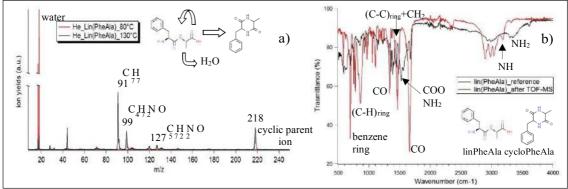


Figure 1: a) ℓ -PheAla mass spectra measured at 21.22 eV incident radiation and evaporation temperature of 80°C (red line) and 130°C (black line). b) Comparison between IR spectra at room temperature (RT) performed on the pristine ℓ -PheAla (black line) and on the sample residual in the crucible used for MS experiments, after sublimation at 130°C for 24 h (red line).

The authors thank MAECI Italia-Svezia Project Novel molecular tools for the exploration of the nanoworld and Progetto DESIR Bando Gruppi di Ricerca Regione Lazio 2017.

References

[1] J. C. Aponte et al., ACS Earth Space Chem. 2017, 1, 3-13.

[2] J. Ying et al., Scientific Reports 2018, 8, 936.

[3] M. Nihamkin et al., J. Phys. Chem. Lett. 2020, 11, 10100-10105.

[4] V. Feyer et al., J. Phys. Chem. A 2009, 113, 10726-10733.

[5] C. Arpigny, AIP Conference Proceedings, 312, 205 (1994).

[6] T. Montmerle et al., EAS Publications Series, 41 (2010), 253-300.

_

¹ laura.carlini@ism.cnr.it